Abstract

AbstractTransparent electrodes (TEs) with metal mesh are regarded as a substitute for traditional indium tin oxide (ITO) due to their excellent optoelectronic properties. The manufacture of metal mesh based on micro‐molds will be a low‐cost and high‐efficiency method, but the cost‐effective fabrication of micro‐molds with a high aspect ratio (AR) currently faces challenges. Here, a polymer micro‐mold with high AR based on an electric‐field‐driven (EFD) micro‐scale 3D printing and molding process is proposed for the mass production of TEs with metal meshes. The final fabricated flexible transparent electrode (FTE) based on polymer micro‐mold with high AR exhibits superior optoelectronic properties with a figure of merit (FOM) of 1800, as well as excellent mechanical stability with a slight increase in the sheet resistance (Rs) during cyclic bending, scratching, torsion, and adhesion tests. Furthermore, the fabricated rigid TE based on polymer micro‐mold shows remarkable performance and stability with a FOM of 2500, a negligible increase in the Rs under harsh working conditions, and a robust heating cycle. Whether used for the manufacture of FTEs or rigid TEs, the polymer micro‐mold shows good service life. This strategy provides support for the efficient and environmentally friendly mass production of high‐performance TEs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.