Abstract

Waste oyster shells were utilized to produce calcium carbonate (CaCO3) by grinding. This CaCO3 was then reacted with acetic acid to yield calcium acetate monohydrate (Ca(CH3COO)2·H2O). Both CaCO3 and Ca(CH3COO)2·H2O were used as precursors for synthesizing calcium oxide (CaO) through thermal decomposition at 900 °C and 750 °C, respectively. The yields of CaO from both precursors, determined through calcination experiments and thermogravimetric analysis (TGA), exceeded 100% due to the high purity of the raw agents and the formation of calcium hydroxide (Ca(OH)2). X-ray fluorescence (XRF) analysis revealed a CaO content of 87.8% for CaO-CC and 91.5% for CaO-CA, indicating the purity and contamination levels. X-ray diffraction (XRD) patterns confirmed the presence of CaO and minor peaks of Ca(OH)2, attributed to moisture adsorption. Fourier-transform infrared (FTIR) spectroscopy identified the vibrational characteristics of the Ca-O bond. Scanning electron microscopy (SEM) showed similar morphologies for both CaO-CC and CaO-CA, with CaO-CA displaying a significant amount of rod-like crystals. Based on these results, calcium acetate monohydrate (CA) is recommended as the superior precursor for synthesizing high-purity CaO, offering advantages for various applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.