Abstract
AbstractLow-cost and chemical resistant microfluidic devices based on thermoplastic elastomers have been fabricated by hot embossing technology. Commercial available thermoplastic elastomer foils based on polyurethane (PU) in a thickness range of 100-600 μm have been used. Prior to the fabrication of the microfluidic devices the chemical resistance of the material against a wide range of standard biological buffer solutions and solvents had been analysed. We created systems of channels, reservoirs and holes for the connections to external capillaries by double-sided hot embossing with an alignment accuracy of +/- 3 micrometer. Closed channel structures were produced by an additional chemical bonding process of the embossed devices with another thermoplastic elastomer foil. The total volume of the fluidic cell was 2 μl/sensor for the use with SAW (surface-acoustic wave) sensor chip and about 0.2 μ/sensor for the impedance sensors. A novel multi-chamber fluidic device was successfully tested for in-situ immobilization of thrombin antibodies and Bovin Serum Albumin (BSA) on different sensor elements of the same sensor chip.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.