Abstract

Petroleum products are hazardous both for humans and nature. Diesel oil is one of the main contaminants of land but also of sea, during its transportation. Currently, there are many different clean-up techniques for petroleum products. One of the most common is adsorption by adsorbent materials. Although adsorption is an eco-friendly and cost-effective approach, it lacks efficiency. The present study investigates the performance of low-cost activated carbon, derived from potato peels and activated under different temperature conditions, from 350 °C to 800 °C. The yield of activated carbon decreases with the increase in the carbonization temperature. However, the sample prepared at 600 °C shows an oil sorption capacity of 72 g/g, which is the highest of all samples. Nitrogen adsorption characterization reveals that this specific sample has the highest specific surface (SSA) area of 1052 m2/g and total a pore volume of 2.959 cm3/g, corresponding to a 94% and 77% increase compared to the sample prepared at 350 °C. Oil sorption kinetics experiments show that, for all samples, the maximum uptake is reached after 1h. Oil uptake was also investigated under realistic conditions by introducing the best performance activated carbon to an oil/seawater system, and the outcome does not show a significant decrease in the oil sorption. The outcomes of this study indicate that low-cost adsorbents from agricultural by-products have strong potential as an oil spill response technique.

Highlights

  • Petroleum hydrocarbon is a complex pollutant of both land and marine environments [1]

  • The present study investigates the performance of activated carbon derived from potato peels, which are prepared under different activation temperature conditions, for oil adsorption

  • Commercially available oil was used as the petroleum product, while the activated carbon (AC) sorbent was synthesized in the lab

Read more

Summary

Introduction

Petroleum hydrocarbon is a complex pollutant of both land and marine environments [1]. Petroleum products, such as diesel, are obtained during crude oil distillation and are made up of low molecular weight alkanes and polycyclic aromatic hydrocarbons [2]. The hydrocarbon composition of diesel fuel makes it toxic to the environment and its widespread application in human activities makes it one of the most hazardous hydrocarbon pollutants. In large quantities in water, due to its hydrophobicity, diesel forms a layer on the water surface, and it becomes easy to remove. If the spill response is not implemented on time, small quantities of the diesel will form an emulsion [4] with the water and more elaborate removal methods will need to be applied

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call