Abstract
BackgroundA novel deep learning image reconstruction (DLIR) algorithm for CT has recently been clinically approved. PurposeTo assess low-contrast detectability and dose reduction potential for CT images reconstructed with the DLIR algorithm and compare with filtered back projection (FBP) and hybrid iterative reconstruction (IR). Material and methodsA customized upper-abdomen phantom containing four cylindrical liver inserts with low-contrast lesions was scanned at CT dose indexes of 5, 10, 15, 20 and 25 mGy. Images were reconstructed with FBP, 50% hybrid IR (IR50), and DLIR of low strength (DLL), medium strength (DLM) and high strength (DLH). Detectability was assessed by 20 independent readers using a two-alternative forced choice approach. Dose reduction potential was estimated separately for each strength of DLIR using a fitted model, with the detectability performance of FBP and IR50 as reference. ResultsFor the investigated dose levels of 5 and 10 mGy, DLM improved detectability compared to FBP by 5.8 and 6.9 percentage points (p.p.), and DLH improved detectability by 9.6 and 12.3 p.p., respectively (all p < .007). With IR50 as reference, DLH improved detectability by 5.2 and 9.8 p.p. for the 5 and 10 mGy dose level, respectively (p < .03). With respect to this low-contrast detectability task, average dose reduction potential relative to FBP was estimated to 39% for DLM and 55% for DLH. Relative to IR50, average dose reduction potential was estimated to 21% for DLM and 42% for DLH. Conclusions:Low-contrast detectability performance is improved when applying a DLIR algorithm, with potential for radiation dose reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.