Abstract
Cellulosic conductive paper/film reinforced by graphene is a promising substrate for energy storage applications due to its comparable conductivity, great flexibility and low cost. However, how to balance the content ratio of graphene/cellulose well is still a challenge. Because conductive paper of low graphene content usually has poor electrical property, while high graphene content is also discouraged owing to the decrease in other properties though electrically improved. Based on this, we developed a different method to produce the graphene/cellulose composite conductive paper. Instead of a separate intermediate-fabrication, starting materials here are continuously one-pot processed, in prior to casting the intermediate paper (solid phase). Next, it is reduced by the l-ascorbic acid solution (liquid phase), followed by a filtration to give the hetero-reduced conductive paper (HRCP). Our results indicate that HRCP possesses high conductivity up to 376 ± 4 S/m, along with good thermal and dynamic behaviors, at a relatively low graphene content of 20 wt%. Therefore, HRCP is expected to be utilized in the field of emerging energy storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.