Abstract
Piezoelectric cement-based composites could serve to monitor the strain state of structural elements or act as self-powered materials in structural health monitoring (SHM) applications. The incorporation of piezoelectric materials as an active phase within cement matrices has presented a highly attractive avenue until today. However, their application is challenged by the low electrical conductivity of the hydrated cement matrix. Gold nanoparticles (Au NPs) possess substantial potential for elevating the free electrical charge within the matrix, increasing its electrical conductivity between the Au NPs and the cement matrix, thereby enhancing the piezoelectric response of the composite. In this sense, the objective of this study is to investigate the effects of incorporating low concentrations of gold nanoparticles (Au NPs) (442 and 658 ppm) on the electrical and piezoelectric properties of cement-based composites. Additionally, this study considers the effects of such properties when the material is cured under a constant electric field. Electrical impedance spectroscopy was used to evaluate the polarization resistance and piezoresistive properties of the material. Additionally, open-circuit potential measurements were taken alongside the application of mechanical loads to assess the piezoelectric activity of the composites. The findings revealed a notable decrease in the composite's total electrical resistance, reaching a value of 1.5 ± 0.2 kΩ, almost four times lower than the reference specimens. In the realm of piezoelectricity, the piezoelectric voltage parameter g33 exhibited a remarkable advancement, improving by a factor of 57 when compared to reference specimens. This significant enhancement can be attributed to both the concentration of Au NPs and the electrical curing process. In summary, the outcomes of this study underscore the feasibility of creating a highly electrically conductive cement-based matrix, using low concentrations of gold nanoparticles as electric charge carries, and indicate the possible piezoelectric behavior of the studied compposite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.