Abstract

Dichloroacetonitrile (DCAN) is one of the emerging nitrogenous disinfection by-products (DBPs) in drinking water. However, its potential toxicological effects remain poorly understood, especially at a low concentration found in the environment. In the present study, we investigated whether the consumption of low-concentration DCAN through drinking water would produce significant effects in male SD rats, with particular focus on their physiological traits and changes in their gut microbiome and metabolite profiles. After a 4-weeks DCAN intervention, significant changes were observed in the body weight, blood indices, and histology in DCAN-treated (100 μg/L) group. Proteobacteria was relatively less abundant in 20 and 100 μg/L DCAN-treated groups compared with that in the control group at phylum level. At genus level, Parasutterella and Anaerotruncus were significantly less abundant in both 20 and 100 μg/L DCAN-treated groups than that in the control group. Furthermore, the gut microbiota-related metabolites were dramatically perturbed after DCAN consumption. In the 20 and 100 μg/L DCAN-treated groups, there were 48 and 95 altered metabolites, respectively, and were found to be involved in sphingolipid signaling pathway, fatty acid biosynthesis, and cGMP−PKG signaling pathway. In summary, we demonstrated that consumption of low-concentration DCAN through drinking water could impair host health and induce gut microbiota dysbiosis and gut microflora-related metabolic disorders in male SD rats. Our findings highlight the potential toxicity of low-concentration DBPs and provide new insight into potential causal relationship between low concentration DBPs found in the drinking water and the host health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.