Abstract

Common agricultural practices result in accumulation of copper in agricultural soils worldwide. The effect of bioavailable copper ([Cu](bio)) on colonization of soil by the AM fungus Glomus intraradices and other soil microorganisms was investigated in microcosms containing copper-amended soil. To avoid indirect effects through the plant, copper was only added to root-free microcosm compartments. [Cu](bio) was measured using a Pseudomonas fluorescens biosensor strain. In the range of 0-1.5 μg g(-1) [Cu](bio), a log-log linear relationship between added copper and [Cu](bio) was found. Microbial colonization of the root-free compartment was evaluated by whole-cell fatty acid analysis (WCFA) and amplified rDNA restriction analysis (ARDRA). The WCFA analysis showed that the AM fungus soil colonization was severely inhibited by Cu with a 50% reduction of mycorrhizal growth at 0.26 μg g(-1) [Cu](bio). The growth of other main microbial groups was not significantly affected by copper. However, ARDRA analysis showed a very strong effect of copper on the bacterial community composition probably caused by an increased proportion of Cu-resistant bacteria. Our results suggest that problems with plant yield may arise when converting slightly copper-contaminated soils to land uses such as low-input and sustainable agriculture that are dependent on AM fungal symbiosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.