Abstract

Superconcentrated "water-in-salt" electrolytes have greatly widened the electrochemical stable window (ESW) of aqueous electrolytes, but they also generate new problems, including high costs, high viscosity, and low conductivity. Here we report a 2 m low concentration electrolyte using an N,N-dimethylformamide/water (DMF/H2O) hybrid solvent, which provides a wider ESW (2.89 V) than an aqueous electrolyte (2.66 V) and presents nonflammability, high conductivity, and low viscosity characteristics. In 2 m DMF/H2O hybrid electrolyte, the LUMO energy of the DMF solvent (-0.00931 a.u.) is lower than that of H2O (-0.00735 a.u.), which could effectively promote the degradation of FSI- and lead to stable solid electrolyte interphase formation. As a result, the electrochemical reversibility and cyclability of the KTi2(PO4)3@C (KTP@C) anode in the aqueous electrolyte have been significantly enhanced with the help of DMF addition. Moreover, the K2Zn3(Fe(CN)6)2 (KZnHCF)//KTP@C full potassium-ion battery exhibits highly efficient stability and rate capability with a long cycle performance over 10 000 cycles and delivers a specific discharge capacity of 33 mAh g-1 at a high current density of 20 A g-1. Low concentrations of DMF/H2O hybrid electrolytes can inhibit the hydrogen evolution reaction of aqueous electrolytes, providing more opportunities for the practical application of electrode materials. Not limited to DMF solvent, mixing organic and aqueous solvents will provide more available options and perspectives for improving the energy density and long cycle performance of the aqueous metal-ion battery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.