Abstract

This paper proposes a novel approach for digital predistortion, based on direct learning architecture (DLA), to reduce the computational complexity. In power amplifier (PA) behavioral models, the coefficients of a Volterra polynomial or a simplified Volterra polynomial are extracted by calculating the inverse of a time-varying matrix, which is resource-consuming, time-consuming, and power-consuming due to its matrix dimension and inverse operation in a field-programmable gate array. To speed up the computation and save hardware resources, we propose a low computational complexity DLA with covariance matrix that uses the constant covariance matrix to replace the time-varying input signal filled matrix based on a stationary ergodic random process. To verify the proposed method, it was applied to a wideband Doherty gallium nitride (GaN) PA at 2.6 GHz with a 40-MHz orthogonal frequency division multiplexing signal, and to a dual-band Doherty GaN PA at 1.9 and 2.6 GHz with two 20-MHz long-term evolution signals. Experimental results show that the proposed algorithm achieves almost the same performance as the traditional approach, with less than one fifth of the computational quantity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call