Abstract

Background and Objectives: Adaptive algorithm adjusts the system coefficients based on the measured data. This paper presents a dichotomous coordinate descent method to reduce the computational complexity and to improve the tracking ability based on the variable forgetting factor. Methods: Vedic mathematics is used to implement the multiplier and the divider operations in the VFF equations. The linear exponentially weighted recursive least squares as the main algorithm is implemented in many applications such as the adaptive controller, the system identification, active noise cancellation techniques, and etc. The DCD method calculates the inverse matrix in the ERLS algorithm and decreases the resources used in the field-programmable gate array, also the designer can use the cheaper FPGA board to implement the adaptive algorithm because the method doesn't need lots of resources. Results: The proposed method is implemented with ISE software on the Spartan 6 Xilinx board. The proposed algorithm calculates the multiplication result with less than 15ns time and reduces the used FPGA resources to lower than 20% as compared with the classic RLS. Conclusion: The proposed method decreases the area and increases the computation speed. Also, it leads to implementing complex algorithms with simple structures and high technology.======================================================================================================Copyrights©2019 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.======================================================================================================

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.