Abstract

We propose a low-complexity precoder design for weighted sum rate maximization (WSRMax) in multiuser multiple-input-multiple-output systems with per-antenna power constraints (PAPCs). The proposed design is based on the alternating optimization framework and a fast dual coordinate ascent method in the inner loop. Specifically, the original nonconvex WSRMax problem is first approximated as a sequence of convex quadratic optimization problems subject to PAPCs by adopting alternating optimization. Then, each convex quadratic problem is solved by a dual coordinate ascent method. The proposed dual coordinate ascent method includes no turning parameters, such as the step size in the projected gradient method, which offers both stability and fast convergence. Simulation results show that the dual coordinate ascent method converges faster than existing methods, which significantly improves the total computational efficiency of alternating optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.