Abstract

We introduce a low complexity approach to iterative equalization and decoding, or “turbo equalization”, which uses clustered models to better match the nonlinear relationship that exists between likelihood information from a channel decoder and the symbol estimates that arise in soft-input channel equalization. The introduced clustered turbo equalizer uses piecewise linear models to capture the nonlinear dependency of the linear minimum mean square error (MMSE) symbol estimate on the symbol likelihoods produced by the channel decoder and maintains a computational complexity that is only linear in the channel memory. By partitioning the space of likelihood information from the decoder based on either hard or soft clustering and using locally-linear adaptive equalizers within each clustered region, the performance gap between the linear MMSE turbo equalizers and low-complexity least mean square (LMS)-based linear turbo equalizers can be narrowed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.