Abstract

The problem of spectrum sensing in multiple-input multiple-output (MIMO) cognitive radio systems using the cyclostationarity property is considered. Since the noise is not a cyclostationary signal and the interference exhibits distinct cyclostationarity as primary user (PU) signals, spectrum sensing based on cyclostationarity is superior to traditional methods. To detect the presence of PU signals, cyclostationarity-based methods tend to use the second-order cyclostationarity property of cyclostationary signals. However, the computation of cyclostationary statistics is complicated. Thus, the complexity of conventional cyclostationary feature detection methods is challenging, especially for MIMO systems. A new improved algorithm that jointly utilizes the cyclostationarity property and the multiple antenna combining technique of MIMO systems is proposed in this paper. The proposed methods simplify the complexity of spectrum sensing and provide robust detection performance. The performance of the proposed schemes compared with conventional cyclic combining methods is evaluated via Monte-Carlo simulation. The simulation results indicate that the proposed method is preferred under some severe noise and interference presence scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.