Abstract
This paper introduces a collection of scaling methods for generating $2N$-point DCT-II approximations based on $N$-point low-complexity transformations. Such scaling is based on the Hou recursive matrix factorization of the exact $2N$-point DCT-II matrix. Encompassing the widely employed Jridi-Alfalou-Meher scaling method, the proposed techniques are shown to produce DCT-II approximations that outperform the transforms resulting from the JAM scaling method according to total error energy and mean squared error. Orthogonality conditions are derived and an extensive error analysis based on statistical simulation demonstrates the good performance of the introduced scaling methods. A hardware implementation is also provided demonstrating the competitiveness of the proposed methods when compared to the JAM scaling method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.