Abstract

A low-complexity rate- and channel-configurable forward error-correction (FEC) scheme is proposed, consisting of an inner low-density parity-check code concatenated with an outer zipper code. A tool is developed to optimize a multi-level code architecture so that it can operate at multiple transmission rates, channel qualities, and modulation orders. The optimization criterion is selected to maintain a low estimated data-flow in its decoding operation. A hardware-friendly quasi-cyclic structure is considered for the inner code and the performance and complexity is reported for various designed FEC configurations. Compared to existing FEC schemes, the proposed designs deliver a similar performance with up to 63% reduction in decoding complexity or provide up to 0.6 dB coding gain at a similar decoding complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.