Abstract

The high peak-to-average power ratio (PAPR) of the transmitted signal is a major drawback of multicarrier transmission such as orthogonal frequency-division multiplexing OFDM. A plethora of PAPR reduction techniques has been reported in the literature. Some of the techniques modify the phase and/or amplitude of symbols in the original symbol alphabet (SA) such as selected mapping and partial transmit sequences techniques. However, such methods have shortcomings of a heavy computational burden caused by required multiple inverse fast-Fourier transform (IFFT) operations and bit error rate performance degradation due to side information (SI). In this study, a low-complexity PAPR reduction framework is proposed to jointly modify phase and amplitude values of the original symbols in the alphabet. This framework utilises only one IFFT/FFT operator pair for transmultiplexing of symbols without any SI. The merit of the proposed method to design a SA modifier matrix (SAM) for PAPR reduction is shown through performance comparisons for the application scenarios presented in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.