Abstract
This paper is concerned with the low-complexity passive suspension design problem, aiming at improving vehicle performance in the meanwhile maintaining simplicity in structure for passive suspensions. Two methods are employed to construct the low-complexity passive suspensions. Using the first method, the number of each element is restricted to one, and the performance for all networks with one inerter, one damper, and one spring is evaluated, where best configurations for different vehicle settings are identified. Using the second method, low-order admittance networks whose orders of admittance functions are no larger than three are utilized. Design methods are proposed by directly using the positive realness conditions imposed on the admittance functions. The effectiveness of the proposed methods is numerically demonstrated, and the comparison between these two constructing methods is conducted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.