Abstract
In this work, a prior-training-free and low-complexity modulation format identification (MFI) scheme, based on amplitude histogram distributions, was proposed and demonstrated, both numerically and experimentally, for autonomous digital coherent receivers. In the proposed scheme, after having performed power normalization, incoming polarization division multiplexed (PDM) signals were classified into QPSK, 8QAM, 16QAM, 32QAM and 64QAM signals, according to their ratios. Ratios were defined according to specific features of their amplitude histograms. The proposed MFI scheme used only amplitude information. As such, it was insensitive to carrier phase noise. Furthermore, the proposed scheme did not require any prior information, such as optical signal-to-noise ratio (OSNR). The performance of the proposed MFI scheme was numerically verified using 28GBaud PDM-QPSK/-8QAM/-16QAM/-32QAM/-64QAM signals. The numerical simulation results showed that the proposed scheme was able achieve a 100% correct identification rate for all five modulation formats when their OSNR values were higher than the thresholds corresponding to the 20% FEC correcting bit error rate (BER) of 2.4 × 10−2. To further explore the effectiveness of the proposed MFI scheme, proof-of-concept experiments in 28GBaud PDM-QPSK/-8QAM/-16QAM, and 21.5GBaud PDM-32QAM transmission systems were also undertaken, which showed that the proposed scheme as robust against fiber nonlinearities. To explore the scheme’s feasibility for use in practical transmission systems, the computational complexity analysis of the proposed scheme was conducted. It showed that, compared with relevant MFI schemes, the proposed MFI scheme was able to significantly reduce the computational complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.