Abstract

This paper deals with a low complexity receiver scheme where equalization and channel decoding are jointly optimized in an iterative process. We derive the theoretical transfer function of the infinite length linear minimum mean square error (MMSE) equalizer with a priori information. A practical implementation is exposed which employs the fast Fourier transform (FFT) to compute the equalizer coefficients, resulting in a low-complexity receiver structure. The performance of the proposed scheme is investigated for the enhanced general packet radio service (EGPRS) radio link. Simulation results show that significant power gains may be achieved with only a few (3-4) iterations. These results demonstrate that MMSE turbo equalization is an attractive candidate for single-carrier broadband wireless transmissions in long delay-spread environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.