Abstract

A multiple-input multiple-output (MIMO) sonar can synthesize a large-aperture virtual uniform linear array (ULA) from a small number of physical elements. However, the large aperture is obtained at the cost of a great number of matched filters with much heavy computation load. To reduce the computation load, a MIMO sonar imaging method using a virtual sparse linear array (SLA) is proposed, which contains the offline and online processing. In the offline processing, the virtual ULA of the MIMO sonar is thinned to a virtual SLA by the simulated annealing algorithm, and matched filters corresponding to inactive virtual elements are removed. In the online processing, outputs of matched filters corresponding to active elements are collected for further multibeam processing and hence, the number of matched filters in the echo processing procedure is effectively reduced. Numerical simulations show that the proposed method can reduce the computation load effectively while obtaining a similar imaging performance as the traditional method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call