Abstract
In this paper, we present a low-complexity hybrid time-frequency approach for the detection of audio signal patterns by proper spectral signatures. The proposed detection algorithm evolves through two main processing phases, denoted as coarse and fine, respectively. The evolution through these two phases is described by a finite state machine model. The use of different processing phases is expedient to reduce the computational complexity and thus the energy consumption. Our results show that the proposed approach allows the efficient detection of the presence of signals of interest. The efficiency of the proposed detection algorithm is first investigated using “ideal” audio signals recovered from publicly available databases and then experimental audio signals acquired with a commercial microphone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.