Abstract

This letter considers high-rate block turbo codes (BTC) obtained by concatenation of two single-error-correcting Reed-Solomon (RS) constituent codes. Simulation results show that these codes perform within 1 dB of the theoretical limit for binary transmission over additive white Gaussian noise with a low-complexity decoder. A comparison with Bose-Chaudhuri-Hocquenghem BTCs of similar code rate reveals that RS BTCs have interesting advantages in terms of memory size and decoder complexity for very-high-data-rate decoding architectures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.