Abstract

This paper proposes a low-complexity method and architecture to compute the logarithm of complex numbers based on coordinate rotation digital computer (CORDIC). Our method takes advantage of the vector mode of circular CORDIC and hyperbolic CORDIC, which only needs shift-add operations in its hardware implementation. Our architecture has lower design complexity and higher performance compared with conventional architectures. Through software simulation, we show that this method can achieve high precision for logarithm computation, reaching the relative error of 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-7</sup> . Finally, we design and implement an example circuit under TSMC 28nm CMOS technology. According to the synthesis report, our architecture has smaller area, lower power consumption, higher precision and wider operation range compared with the alternative architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call