Abstract

A low-complexity 3rd-order frequency-domain nonlinear equalizer (FD-NLE) with absolute operation is proposed and experimentally demonstrated for underwater wireless optical communications (UWOC). In the proposed FD-NLE scheme, absolute operation and fast Fourier transform (FFT) with multiplication operations are utilized instead of the square and convolution operations used in conventional polynomial nonlinear equalizers (PNLEs), respectively. Therefore, complexity reductions by over 77.3% and 66.9% can be achieved compared with those of PNLE and PNLE with absolute operation, respectively, with a memory length larger than 8. A UWOC system using orthogonal frequency division multiplexing (OFDM) signals with adaptive bit and power loading is also demonstrated to evaluate the performance of the proposed scheme. Experimental results show that data rate increments by ∼ 5.6% and ∼ 5.7% at BER below 7% hard-decision forward error correction (HD-FEC) limit of 3.8 × 10-3, compared with PNLE and PNLE with absolute operation, respectively, are realized using the proposed scheme. Meanwhile, the proposed scheme has an up to 14.7% complexity reduction compared with conventional frequency-domain PNLE (FD-PNLE), while maintaining similar equalization performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.