Abstract

SummaryIn this paper, a low‐complexity optimal power allocation (PA) scheme is developed to maximize energy efficiency (EE) in a distributed antenna system (DAS) under maximum power constraint and target bit error rate (BER) requirement. Composite Rayleigh fading, multiple receive antennas, and dynamic circuit power consumption are all considered in the system. Unlike conventional schemes, the presented scheme provides a closed‐form expression of PA. Firstly, the optimization problem is formulated according to the definition of EE. Using the Karush‐Kuhn‐Tucker conditions, a general form of the optimal PA, in which the number of active antennas and corresponding power allocation are required only, is then proposed. With this general form, an effective algorithm is presented to yield the closed‐form PA. The proposed scheme can be applied to the system with static circuit power consumption and/or without target BER constraint to obtain optimal PA. Simulation results corroborate the effectiveness of the developed scheme, and the scheme can achieve the same EE performance as the existing optimal schemes with lower complexity. Moreover, the distributed antenna system with multiple receive antennas has higher EE than that with single receive antenna.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.