Abstract

This paper studies the problem of designing a low complexity Concurrent Error Detection (CED) circuit for the complex multiplication function commonly used in Digital Signal Processing circuits. Five novel CED architectures are proposed and their computational complexity, area, and delay evaluated in several circuit implementations. The most efficient architecture proposed reduces the number of gates required by up to 30 percent when compared with a conventional CED architecture based on Dual Modular Redundancy. Compared to a Residue Code CED scheme, the area of the proposed architectures is larger. However, for some of the proposed CEDs delay is significantly lower with reductions exceeding 30 percent in some configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.