Abstract

Realistic microscopic RPA calculations for156Gd with a deformed Woods-Saxon mean field, quadrupole-quadrupole, spin-spin and symmetry-restoring residual interactions show that the purely collective scissors mode of the two-rotor model is fragmented over orbital isovector 1+ states, lying at 2–7 MeV. The strongest experimentally observed magnetic dipole state is interpreted as performing a low-collective scissors-type of geometrical motion. This conclusion evolves from the identification of the above state with the strongest RPA excitation, which reproduces well the experimental energy,B(M1) value and (e, e′) form factor, has the largest overlap with the scissors state and can be represented as a low-collective scissors type vibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.