Abstract

In this paper, a non-contact optical system, a low-coherence interferometer (LCI), is introduced for the purpose of measuring the surface roughness of turbine blades. The designed system not only possesses a high vertical resolution and is able to acquire the roughness topography, but also it has a large vertical scanning range compared to other commonly used optical systems. The latter characteristic allows us to measure turbine blades surfaces with large curvature without collisions between the lens and the measurement object. After obtaining the surface topography, wavelet analysis is applied to decompose the original surface into multiple bandwidths to conduct a multiscale analysis. The results show that the developed LCI system proofs a good performance not only in obtaining the surface topography in the roughness scale but also in being able to measure surfaces of objects that possess a complex geometry in a large vertical range. Furthermore, the applied biorthogonal wavelet in this study has performed good amplitude and phase properties in extracting the roughness microstructures from the whole surface. Finally, the traditional roughness parameters, such as the mean surface roughness Sa and the Root Mean Square (RMS) roughness Sq, are evaluated in each decomposed subband and their correlations with the scale of each subband are analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.