Abstract

The C-terminal fragment of merozoite surface protein-1 (MSP-1) of the mouse malaria parasite Plasmodium chabaudi chabaudi (AS) stimulates a weak CD4 T cell response when compared to the response to a more structurally simple region of the molecule. The tertiary structure of the C-terminal region of MSP-1 is maintained by five disulfide bonds. A peptide from this region could only be processed and loaded onto newly synthesized MHC class II molecules, whereas a peptide from the structurally simple region was available for loading onto recycling MHC class II. CD4(+) T cell hybridomas took longer to recognize an epitope derived from the disulfide-bonded region whether native parasite or recombinant MSP-1 antigen was used. Reduction of disulfide bonds in the C-terminal region subsequently allowed peptides to be loaded onto recycling MHC class II and greatly enhanced the rapidity of the T cell response. These data demonstrate that differential processing occurs intramolecularly in MSP-1, which may be responsible for the observed weak CD4 T cell responses against this region. The consequences of this in vivo may be that limited T cell help is available for protective antibody production which has important implications for designing vaccines based on MSP-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call