Abstract

The complete set of partial pair distribution functions for a rare earth oxide liquid are measured by combining aerodynamic levitation, neutron and x-ray diffraction on Y2O3, and Ho2O3 melts at 2870K. The average Y-O (or Ho-O) coordination of these isomorphic melts is measured to be 5.5(2), which is significantly less than the octahedral coordination of crystalline Y2O3 (or Ho2O3). Investigation of La2O3, ZrO2, and Al2O3 melts by x-ray diffraction and molecular dynamics simulations also show lower-than-crystal cation-oxygen coordination. These measurements suggest a general trend towards lower coordination compared to their crystalline counterparts. It is found that the coordination drop is larger for lower field strength, larger radius cations and is negligible for high field strength (network forming) cations, such as SiO2. These findings have broad implications for predicting the local structure and related physical properties of metal-oxide melts and oxide glasses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call