Abstract
In order to reduce the randomness of wind power and improve system consumption capacity, a jointly scheduling optimization model with energy storage systems (ESSs) and carbon emission trade (CET) is introduced. Firstly, the basic scheduling model for wind power and thermal power is established with the objective function of the maximum system benefit considering system operation constraints. Secondly, the carbon emission cost model for thermal power generation and the ESSs’ operation profit model are established, respectively. System comprehensive scheduling objective function considering CET and ESSs is also presented. Thirdly, the jointly scheduling model for wind power and thermal power considering ESSs’ operation condition, CET condition and newly system reserve condition are taken into consideration. Finally, the simulation system with 10 thermal power units and 2800MW wind power turbines is proposed. The results show the large-scale wind power grid connection relies on thermal power to provide reserve service, which could reduce unit utilization efficiency and the overall coal consumption rate. The cleaning characteristics of wind power could be transformed into economic benefits by CET, which will promote wind power consumption and reduce abandoned wind power. The charge-discharge characteristics of ESSs could smooth load curve and enlarge the grid-connected space of wind power. However, the overall benefit reduces due to ESS’s high fixed costs. The system overall benefit reaches the maximum when ESSs and CET are simultaneously introduced, which indicates ESS and CET have synergistic optimization effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.