Abstract

Sewage treatment as a high energy consumption industry, its electricity consumption accounts for 3 % of the total electricity consumption of society. That means significant greenhouse gas emissions. In the context of China's goal of “reaching carbon peak by 2030 and achieving carbon neutrality by 2060”, reducing the energy consumption of wastewater treatment systems has emerged as an important issue in recent years. In this paper, the GPS-X simulation software was employed to conduct a simulation study of a modified Anoxic-Aerobic-Oxic wastewater treatment plant (WWTP) in Wuhan, and the response surface methodology (RSM) was utilized to ascertain the interactive effects of DO, IRF, ERR, and SD on the effluent quality, thereby identifying the operational parameters that minimize energy consumption while maintaining satisfactory effluent quality. Additionally, the PVsyst software was employed to design the solar power generation system of the WWTP and analyze its power generation potential. On this basis, through the coupling of photovoltaic power, electricity load, time-of-use pricing, and the water quality simulation model, and taking the WWTP data in September as a case study, the electricity usage strategies under various illumination conditions were formulated. The aim is to maximize the use of photovoltaic power to reduce the cost and carbon emissions of the WWTP. The results show that the optimal combination of operational parameters, including an external reflux ratio of 0.3, the internal recycle flow of 50,000 m3/d, and the sludge discharge of 448 m3/d, resulted in a reduction in power of 208.5 kW, and after the combination optimization of operational parameters and electricity utilization, the operation cost of the WWTP in September was reduced by 40 % ∼ 60 %, and the carbon emission attributable to electricity was reduced by 30 % ∼ 50 %.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.