Abstract
To realize the low-carbon operation of integrated energy systems (IESs), this paper proposes a low-carbon optimal scheduling method. First of all, considering the integrated demand response of price-based electricity and heating, an economic scheduling model of the IES integrated demand response based on chance-constrained programming is proposed to minimize the integrated operating cost in an uncertain environment. Through the comprehensive demand response model, the impact of the demand response ratio on the operating economy of the IES is explored. Afterward, the carbon emission index is introduced, and gas turbines and energy storage devices are used as the actuators of multi-energy coupling to further explore the potential interactions between the coupling capacities of various heterogeneous energy sources and carbon emissions. Finally, the original uncertainty model is transformed into a mixed-integer linear-programming model and solved using sequence operation theory and the linearization method. The results show that the operating economy of the IES is improved by coordinating the uncertainty of the integrated demand response and renewable energy. In addition, the tradeoff between the working economy and reliability of the EIS can be balanced via the setting of an appropriate confidence level for the opportunity constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.