Abstract
Large scale, low cost, and low carbon intensity hydrogen production is needed to reduce emissions in the energy and transportation sectors. We present a techno-economic analysis and life cycle assessment of natural gas pyrolysis technologies for hydrogen production, with carbon black (CB) as a co-product. Four designs were considered based on the source of heat to the pyrolysis system, the combustion medium, and use of carbon capture (CC) technology. The oxygen-fired-CB design with CC is the most attractive from financial and environmental perspectives, superior to a conventional steam methane reformer (SMR) process with CC. The estimated pre-tax minimum hydrogen selling prices for the pyrolysis technologies range between $1.08/kg and $2.43/kg when natural gas (NG) costs $3.76/GJ. Key advantages include near-zero onsite GHG emissions of the oxygen-fired-CB design with CC and up to 41% lower GHG emissions compared to the SMR + CC process. The results indicate that natural gas pyrolysis may be a feasible pathway for hydrogen production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.