Abstract

New wood-based composite materials with thermal conductivity are greatly desired in the fields of packaging materials for electronic components. In this study, a new multifunctional composite material (M@FC) is prepared by simply blending clay-like Ti3C2Tx MXene and delignified wood fibers together, and then followed by an infusing epoxy resin with environmentally friendly vacuum assisted resin transfer molding (VARTM) process. The resulting M@FC (0.92 W m−1 K−1) possesses superior thermal conductivity as compared to natural wood (0.099 W m−1 K−1) and most polymers. Furthermore, after the VARTM process, the structure of the M@FC is tighter, and thus showing excellent mechanical properties (tensile strength of 93.0 MPa and flexural strength of 172.7 MPa). In addition, good water resistance and excellent flame retardant property are observed for M@FC. The improvement of thermal conductivity provides the possibility for its application for packaging materials in electronic components. This study using waste wood as the important component provides a new idea for carbon cycling and recycling of natural resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call