Abstract

In order to improve the level of new energy consumption in the system and utilize the clean and efficient characteristics of hydrogen energy, an integrated energy system (IES) scheduling model considering refined utilization of hydrogen energy and generalized energy storage is proposed. Firstly, the two-stage hydrogen energy utilization model of power-to-gas (P2G) is finely modeled, and the waste heat of the P2G methanation reaction is innovatively coupled with the Kalina cycle to improve the thermoelectric decoupling capability of the combined heat and power (CHP) unit. Secondly, integrated demand response, electric vehicles, and hydrogen-containing multi-source energy storage equipment are used as generalized energy storage resources to cut peaks and fill valleys. Then, on the basis of considering the ladder-type carbon trading mechanism, the IES conventional operation model is constructed with the minimum operating cost of the system as the objective function. Furthermore, considering the source-load uncertainty of IES operation, a multi-energy complementary optimal scheduling model of hydrogen-containing IES based on conditional value-at-risk was established. Through simulation analysis, it can be seen that the proposed model takes into account both economic and environmental benefits and improves the system’s ability to “peak cutting and valley filling” and measure risk levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call