Abstract

Low-barrier hydrogen bonds (LBHBs) are a special type of short hydrogen bond (HB) that is characterized by the equal sharing of a hydrogen atom. The existence and catalytic role of LBHBs in proteins has been intensely contested. Advancements in X-ray and neutron diffraction methods has revealed delocalized hydrogen atoms involved in potential LBHBs in a number of proteins, while also demonstrating that short HBs are not necessarily LBHBs. More importantly, a series of experiments on ketosteroid isomerase (KSI) have suggested that LBHBs are significantly stronger than standard HBs in the protein microenvironment in terms of enthalpy, but not free energy. The discrepancy between the enthalpy and free energy of LBHBs offers clues to the challenges, and potential solutions, of the LBHB debate, where the unique strength of LBHBs plays a special role in the kinetic processes of enzyme function and structure, together with other molecular forces in a pre-organized environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call