Abstract

An n-type polymer (A701) is designed and synthesized with an alternative A'-DAD-A'-D' backbone, where 1,1-dicyanomethylene-3-indanone (IC), dithienothiophen[3,2-b]-pyrrolobenzothiadiazole (TPBT), and benzodithiophene (BDT) are used as A', DAD, and D' units, respectively. A701 shows enhanced light absorption with a narrow bandgap of 1.42 eV and a high absorption coefficient of 6.85 × 104 cm-1 at 780 nm. It displays an uplifted LUMO (the lowest unoccupied molecular orbital) level of -3.80 eV. By introducing a high point solvent additive of 1,8-diiodooctane (DIO), all-polymer solar cells (all-PSCs) based on the PBDB-T:A701 blend exhibit efficient exciton dissociation, enhanced charge transport, and decreased bimolecular recombination. Thus, a high open-circuit voltage (VOC) of 0.92 V, a short-circuit current (JSC) of 18.27 mA cm-2, and a fill factor (FF) of 0.64 are attained, affording an impressive power conversion efficiency (PCE) of 10.70%. The low voltage loss of 0.50 V and high efficiency of 10.7% are among the top values for all-PSCs. Our results indicate that the fused DAD-type heptacyclic ring can be utilized to construct not only nonfullerene small molecular acceptors but also promising polymer acceptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.