Abstract

BackgroundBalance is sustained through multi-joint coordination in response to postural perturbations. Low back pain alters postural responses; however, it is unknown how coordination between the trunk and lower extremities affects center of mass control during standing balance among persons with limb loss, particularly those with back pain. MethodsForty participants with unilateral lower limb loss (23 with back pain) stood with eyes open and closed on a firm surface, while wearing IMUs on the sternum, pelvis, and bilaterally on the thigh, shank, and foot. A state-space model with Kalman filter calculated sagittal trunk, hip, knee, and ankle joint angles. Fuzzy entropy quantified center of mass variability of sagittal angular velocity at the sacrum. Normalized cross-correlation functions identified coordination patterns (trunk-hip, trunk-knee, trunk-ankle). Multiple linear regression predicted fuzzy entropy from cross-correlation values for each pattern, with body mass and amputation level as covariates. FindingsWith eyes open, trunk-lower limb joint coordination on either limb did not predict fuzzy entropy. With eyes closed, positive trunk-hip coordination on the intact limb predicted fuzzy entropy in the pain group (p = 0.02), but not the no pain group. On the prosthetic side, inverse trunk-hip coordination patterns predicted fuzzy entropy in pain group (p = 0.03) only. InterpretationPersons with limb loss and back pain demonstrated opposing coordination strategies between the lower limbs and trunk when vision was removed, perhaps identifying a mechanism for pain recurrence. Vision is the dominant source of balance stabilization in this population, which may increase fall risk when visual feedback is compromised.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.