Abstract

Six cobalt gold (CoAu) electrodes were prepared by electroless deposition using different gold-containing solutions (acidic and weakly acidic) and different Au deposition times. Characterization of CoAu electrodes was done by scanning electron microscopy with energy-dispersive X-ray spectroscopy, N2-sorption, and X-ray powder diffraction techniques. The possibility of using the prepared electrodes in environmental applications, i.e., for the electrochemical sensing of a trace amount of arsenic(iii) in weakly alkaline media was assessed. Employing the CoAu electrode (prepared by immersing Co/Cu into 1 mM HAuCl4 (pH 1.8) at 30 °C for 30 s) under optimized conditions (deposition potential −0.7 V and deposition time of 60 s), a low limit of detection of 2.16 ppb was obtained. Finally, this CoAu electrode showed activity for arsenic oxidation in the presence of Cu(ii) as a model interferent as well as in real samples. Furthermore, the use of CoAu electrode as an anode in fuel cells, namely, direct borohydride – hydrogen peroxide fuel cells was also assessed. A peak power density of 191 mW cm−2 was attained at 25 °C for DBHPFC with CoAu anode at a current density of 201 mA cm−2 and cell voltage of 0.95 V, respectively. The peak power density further increased with the increase of the operating temperature to 55 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call