Abstract

<p>Solar wind and its embedded interplanetary magnetic field (IMF) affects Earth’s upper atmosphere by changing high-latitude ionospheric convection patter, producing auroral precipitation and depositing energy and momentum at high latitudes. These processes are greatly enhanced during geomagnetically active periods.  The geomagnetic activity induced changes at high latitudes are then transmitted to middle and low latitudes. In this work we employ the recently developed Multiscale Atmosphere-Geospace Environment (MAGE) model to simulate the non-linear electrodynamic and dynamic processes by which solar wind and IMF affect low and middle latitude thermosphere and ionosphere during geomagnetically active periods, including the stream interaction region event that happened in September 2020.  We examine the changes in ionospheric electric fields caused by penetration electric fields and neutral wind dynamo, as well as changes in neutral winds, temperature, composition  and ionospheric plasma densities. Model results are compared with  data from recent satellite mission, including COSMIC 2, GOLD and ICON to obtain new insight in the physical processes in the global thermosphere ionosphere responses to disturbed solar wind and IMF driving conditions.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.