Abstract

ABSTRACT Organic solutions comprising the Actinide Lanthanide Separation Process (ALSEP) solvent consisting of 0.5 M 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and 0.05 M N,N,N’,N’-tetra(2-ethylhexyl)diglycolamide (T2EHDGA) in n-dodecane were subjected to low LET and high LET irradiation before and after equilibration with an aqueous phase of 3 M HNO3. Degradation dose constants revealed greater ligand degradation due to gamma irradiation than alpha irradiation for both ligands. Furthermore, equilibration with nitric acid did not have a significant impact on ligand degradation for either irradiation source. Identified degradation products were similar for both gamma and alpha irradiation and occurred mostly through the rupture of the N–Ccarbonyl and C–Oether bonds for T2EHDGA and the C–Oether bond in HEH[EHP]. Acid contact appears to alter the degradation pathway by favoring the formation of higher molecular weight recombination products. Mixed T2EHDGA-HEH[EHP]-NO3 complexes were formed with Nd(III) after extraction from 3 M HNO3, and low LET gamma irradiation of the Nd(III) loaded organic solution produced similar degradation products as the organic solution absent of Nd(III). Interestingly, and likely due to the greater radiolytic susceptibility of T2EHDGA than HEH[EHP], a HEH[EHP]-Nd(III) complex appears to form as the T2EHDGA degrades with increasing absorbed dose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.