Abstract
This study aims to assess hydrogen peroxide (HP) penetration within the pulp chamber, color change (CC), physical-chemical properties, and temperature using in-office different concentration bleaching gels with or without violet light. Fifty teeth were divided into five groups (n = 10) based on the HP concentration bleaching gels used (6% and 35%) and the used violet light (with or without). HP penetration within the pulp chamber was measured using UV-Vis. The CC was evaluated with a digital spectrophotometer. Initial and final concentration, and pH were measured through titration, and a Digital pHmeter, respectively. Temperature analyses were measured through a thermocouple. Statistical analysis included two-way ANOVA, Tukey's, and Dunnett's test(α = 0.05). The presence of violet light did not affect the amount of HP within the pulp chamber, or the CC (p > 0.05). Greater penetration of HP was observed within the pulp chamber, as well as CC when using 35% HP (p < 0.05). The final concentration of both gels was lower than the initial concentration, regardless of the use of violet light (p < 0.05). The initial and final pH levels remained neutral and stable (p > 0.05). The pulp temperature increased when the gels were used in conjunction with violet light (p < 0.05). Using violet light in conjunction with 6% or 35% HP does not alter the physical properties of the bleaching agents, the penetration of HP or enhance color change. However, an increase in temperature was observed when violet light was applied associated with bleaching gels. While the simultaneous use of violet light with hydrogen peroxide 6% or 35% does not alter the material's properties, it also does not bring benefits in reducing hydrogen peroxide penetration and improving color change. Furthermore, the use of violet light increases pulp temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.