Abstract

To determine the importance of hepatic apolipoprotein (apo) E in lipoprotein metabolism, HepG2 cells were transfected with a constitutive expression vector (pRc/CMV) containing either the complete or the first 474 base pairs of the human apoE cDNA inserted in an antisense orientation, for apoE gene inactivation, or the full-length human apoE cDNA inserted in a sense orientation for overexpression of apoE. Stable transformants were obtained that expressed 15, 24, 226, and 287% the apoE level of control HepG2 cells. The metabolism of low-density lipoprotein (LDL) and high-density lipoprotein-3 (HDL(3)), two lipoprotein classes following both holoparticle and cholesteryl esters (CE)-selective uptake pathways, was compared between all these cells. LDL-protein degradation, an indicator of the holoparticle uptake, was greater in low apoE expressing cells than in control or high expressing cells, while HDL(3)-protein degradation paralleled the apoE levels of the cells (r(2) = 0.989). LDL- and HDL(3)-protein association was higher in low apoE expressing cells compared to control cells. In opposition, LDL- and HDL(3)-CE association was not different from control cells in low apoE expressing cells but rose in high apoE expressing cells. In consequence, the CE-selective uptake (CE/protein association ratio) was positively correlated with the level of apoE expression in all cells for both LDL (r(2) = 0.977) and HDL(3) (r(2) = 0.998). We also show that, although in normal and low apoE expressor cells, 92% of LDL- and 80% HDL(3)-CE hydrolysis is sensitive to chloroquine suggesting a pathway linked to lysosomes for both lipoproteins, cells overexpressing apoE lost 60% of chloroquine-sensitive HDL(3)-CE hydrolysis without affecting that of LDL-CE. Thus, the level of apoE expression in HepG2 cells determines the fate of LDL and HDL(3).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.