Abstract

Small- and medium-sized unmanned aerial vehicles (UAVs) can fly for a short distance (<2 km) from a control station in a nonsegregated air space (altitudes < 100 m). It is of great interest to model the propagation channel under such condition, where there is an important influence from the environment. This paper presents multiple measurements carried out in low altitudes with a medium-sized UAV flying over a semiurban environment. Path loss exponent is given based on the measurements done at different altitudes and a height-dependent Rician K factor model is proposed. The results clearly reveal the existence of two propagation zones with very distinct channel characteristics. The breakpoint indicates the height where the condition of the channel changes rapidly. At low altitudes, the obstacles generate a large amount of multipath and the propagation is greatly affected, while at higher altitudes the influence mitigates. Our results are useful for the modeling of low altitude air-to-ground (AG) propagation channels and the performance analysis of UAV-enabling AG communication systems, such as the channel capacity and the throughput.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.