Abstract
This paper presents the design, fabrication and characterization of a low actuation voltage capacitive shunt RF-MEMS switch for microwave and millimeter-wave applications based on a corrugated electrostatic actuated bridge suspended over a concave structure of coplanar waveguide (CPW), with sputtered nickel as the structural material for the bridge and gold for CPW line, fabricated on high-resistivity silicon (HRS) substrate using IC compatible processes for modular integration in a communication devices. The residual stress is very low because having both ends corrugated structure of the bridge in concave structure. The residual stress is calculated about 3-15 MPa in corrugated bridge and 30MPa in flat bridge. The corrugated bridge of the concave structure requires lower actuation voltages 20-80V than 50-100V of the flat bridge of the planar structure in 0.3 to 1.0 μm thick Ni capacitive shunt RF-MEMS switch, in insertion loss 1.0 dB, return loss 12dB, power loss 10 dB and isolation 28 dB from 0.5 up to 40 GHz. The residual stress of the bridge material and structure is critical to lower the actuation voltage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.