Abstract
We study a scalar-tensor version of Lovelock theory with a non trivial higher order galileon term involving the coupling of the Lovelock two tensor with derivatives of the scalar galileon field. For a static and spherically symmetric spacetime we extend the Boulware-Deser solution to the presence of a Galileon field. The hairy solution has a regular scalar field on the black hole event horizon and presents certain self tuning properties for the bulk cosmological constant and the Gauss-Bonnet coupling. The combined time and radial dependence of the galileon field permits its horizon regularity. Furthermore in order to investigate the effects of linear time dependence we find spherically symmetric solutions in 4 and 5 spacetime dimensions. They are shown to have singular horizons. Afar from the Schwarzschild radius and for weak higher dimensional couplings the solutions are perturbratively close to GR representing GR like star solutions for scalar tensor theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.