Abstract

To study the effect of initial stress on the propagation behavior of Love waves in a layered functionally graded piezoelectric structure, a mathematical model is established. The piezoelectric layer is taken as exponentially graded material where as half-space is taken as simply elastic substratum. The coupled electromechanical field equations are solved analytically to obtain the mechanical displacements and electrical potential functions for the piezoelectric layer and elastic substrate. The dispersion relations are obtained for electrically open and short cases. The higher mode Love wave propagation has been considered. For numerical interpretation of the results, four sets of piezoelectric layer and elastic substrate have been taken into consideration. Graphical representation reveals about the effect of initial stress and the effect of inhomogeneity parameter on the phase velocity against wave number for electrically open and electrically short cases, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.